首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   22篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   10篇
  2014年   4篇
  2013年   13篇
  2012年   13篇
  2011年   8篇
  2010年   10篇
  2009年   11篇
  2008年   6篇
  2007年   7篇
  2006年   12篇
  2005年   13篇
  2004年   6篇
  2003年   6篇
  2002年   13篇
  2001年   7篇
  2000年   11篇
  1999年   15篇
  1998年   7篇
  1997年   6篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   10篇
  1976年   3篇
  1975年   5篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   6篇
  1970年   3篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1955年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
41.
Mechanisms of glycogenolysis have been investigated in a comparative study with Wistar rats and gsd rats, which maintain a high glycogen concentration in the liver as a result of a genetic deficiency of phosphorylase kinase. In Wistar hepatocytes the rate of glycogenolysis, as modulated by glucagon and by glucose, was proportional to the concentration of phosphorylase a. In suspensions of gsd hepatocytes the rate of glycogenolysis was far too high as compared with the low level of phosphorylase a; in addition, only a minor fraction of the glycogen lost was recovered as glucose and lactate, owing to the accumulation of oligosaccharides. When the gsd hepatocytes were incubated in the presence of an inhibitor of alpha-amylase (BAY e 4609) glycogenolysis and the formation of oligosaccharides virtually ceased; the production of glucose plus lactate, already modest in the absence of BAY e 4609, was further decreased by 40%, owing to the suppression of a pathway for glucose production by the successive actions of alpha-amylase and alpha-glucosidase. Evidence was obtained that gsd hepatocytes are more fragile, and that amylolysis of glycogen occurred in damaged cells and/or in the extracellular medium. This may even occur in vivo, since quick-frozen liver samples from anesthetized gsd rats contained severalfold higher concentrations of oligosaccharides than did similar samples from Wistar rats. However, administration of a hepatotoxic agent (CCl4) caused hepatic glycogen depletion in Wistar rats, but not in gsd rats. The administration of phloridzin and of vinblastine, which have been proposed to induce glycogenolysis in the lysosomal system, did not decrease the hepatic glycogen level in gsd rats. Taken together, the data indicate that only the phosphorolytic degradation of glycogen is metabolically important, and that alpha-amylolysis is an indication of an increased fragility of gsd hepatocytes, which becomes prominent when these cells are incubated in vitro.  相似文献   
42.
43.
Summary A method to obtain amber mutations in ribosomal protein genes is described. It relies on the P1-mediated localized mutagenesis (Hong and Ames, 1971) and on the fact that the recipient strain contains (a) an efficient but genetically unstable suppressor, (b) a particular thermoinducible prophage which kills suppressor hosts at 42° C. Exposure of these bacteria to the high temperature yields frequent suppressor-free derivatives while none will be found if the strain carries an amber mutation in an essential gene. Eleven mutants have been isolated by this method, of which at least six appear to carry amber mutations. All of them map close to, and to the right of spcA, in a region which codes mostly for ribosomal proteins. Three mutants were studied biochemically; all three show defective ribosomal assembly in vivo upon loss of suppression.  相似文献   
44.
The Rho/Rho-associated kinase (ROK) pathway has been shown to modulate volume-regulated anion channels (VRAC) in cultured calf pulmonary artery endothelial (CPAE) cells. Since Rho/ROK can increase myosin light chain phosphorylation, we have now studied the effects of inhibitors of myosin light chain kinase (MLCK) or myosin light chain phosphatase (MLCP) on VRAC in CPAE. Application of ML-9, an MLCK inhibitor, inhibited VRAC, both when applied extracellularly or when dialyzed into the cell. A similar inhibitory effect was obtained by dialyzing the cells with AV25, a specific MLCK inhibitory peptide. Conversely, NIPP1(191-210), an MLCP inhibitory peptide, potentiated the activation of VRAC by a 25% hypotonic stimulus. These data indicate that activation of VRAC is modulated by MLC phosphorylation.  相似文献   
45.
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5'-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130(RB13-6)). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.  相似文献   
46.
 The heme group of myeloperoxidase shows anomalous optical properties, and the enzyme possesses the unique ability to catalyze the oxidation of chloride. However, the nature of the covalently bound heme macrocycle has been difficult to identify. In this work, the electronic and magnetic properties of the heme groups in oxidized and reduced forms of wild-type and Met243Thr mutant myeloperoxidase and wild-type lactoperoxidase have been investigated using variable-temperature (1.6–273 K) magnetic circular dichroism (MCD) spectroscopy along with parallel optical absorption and electron paramagnetic resonance studies. The results provide assessment of the spin state mixtures of the oxidized and reduced samples at ambient and liquid helium temperatures and show that the anomalous MCD properties of myeloperoxidase, e.g. red-shifted and inverted signs for bands in the high-spin ferric and low-spin ferrous forms compared to other heme peroxidases and heme proteins in general, are a direct consequence of a novel electron-withdrawing sulfonium ion heme linkage involving Met243. Received: 3 May 1999 / Accepted: 9 August 1999  相似文献   
47.
A 268-amino-acid-residue carboxy-terminal antigenic fragment of the Toxoplasma gondii rhoptry protein ROP2 (recROP2t, residues 196–464) was expressed in Escherichia coli. This recombinant fragment was produced at low concentration and in a highly insoluble form. By contrast, the level of recROP2t production was drastically greater when the same coding sequence was fused to the C-terminus of thioredoxin (TRX) or to the maltose-binding protein (MBP) gene. While both fusion proteins were found to be mainly insoluble, solubilization could be achieved without significant degradation. MBP was more efficient than TRX in increasing the recovery of soluble protein with more than 10% of total MBP–recROP2t being readily expressed in a soluble form. Moreover, the insoluble form of MBP–recROP2t could be correctly refolded with a recovery of more than 80%. Both forms of MBP–recROP2t were purified to homogeneity by amylose chromatography. In contrast, the refolding of TRX–recROP2t promoted aggregation of the protein, which was prevented by the use of zwitterionic detergent during the one-step purification by gel filtration. Subsequent proteolytic cleavages of purified TRX–recROP2t and of MBP–recROP2t led respectively to the complete degradation or to the truncation of the recROP2t moiety. However, recROP2t, despite the presence of the fusion partners, adopted a suitable conformation recognized by human serum-derived antibodies from T. gondii-seropositive individuals. Finally, both fusion proteins were able to induce specific humoral and cell-mediated immune response to the ROP2 fragment. Such fusions could represent an alternative to study the immunogenicity of T. gondii proteins which are difficult to produce because of insolubility and degradation.  相似文献   
48.
Neurofilaments (NFs) are neuron-specific intermediate filaments, and are the major cytoskeletal component in large myelinated axons. Lysine-serine-proline (KSP) repeats in the tail domains of high molecular weight NF proteins (NF-M and NF-H) are extensively phosphorylated in vivo in the axon. This phosphorylation in the tail domain has been postulated to play an important role in mediating neuron-specific properties, including axonal caliber and conduction velocity. Recent studies have shown that the mitogen-activated protein kinases (extracellular signal-regulated kinases, Erk1 and Erk2) phosphorylate KSP motifs in peptide substrates derived from the NF-M and NF-H tail domains in vitro. However, it is not clear whether activation of the mitogen activated protein (MAP) kinase pathway is able to phosphorylate these domains in vivo. To answer this question, a constitutively active form of mitogen-activated Erk activating kinase (MEK1) was cotransfected with an NF-M expression construct into NIH 3T3 cells. The activated mutant, but not the dominant negative mutant, induced phosphorylation of NF-M. In addition, it was shown that epidermal growth factor, which induces the MAP kinase cascade in NIH 3T3 cells, also activated endogenous Erk1 and Erk2 and NF-M tail domain phosphorylation in the transfected cells. These results present direct evidence that in-vivo activation of Erk1 and Erk 2 is sufficient for NF-M tail domain phosphorylation in transfected cells.  相似文献   
49.
The heme group of myeloperoxidase is covalently linked via two ester bonds to the protein and a unique sulfonium ion linkage involving Met(243). Mutation of Met(243) into Thr, Gln, and Val, which are the corresponding residues of eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase, respectively, and into Cys was performed. The Soret band in the optical absorbance spectrum in the oxidized mutants is now found at approximately 411 nm. Both the pyridine hemochrome spectra and resonance Raman spectra of the mutants are affected by the mutation. In the Met(243) mutants the affinity for chloride has decreased 100-fold. All mutants have lost their chlorination activity, except for the M243T mutant, which still has 15% activity left. By Fourier transform infared difference spectroscopy it was possible to specifically detect the (13)CD(3)-labeled methionyl sulfonium ion linkage. We conclude that the sulfonium ion linkage serves two roles. First, it serves as an electron-withdrawing substituent via its positive charge, and, second, together with its neighboring residue Glu(242), it appears to be responsible for the lower symmetry of the heme group and distortion from the planar conformation normally seen in heme-containing proteins.  相似文献   
50.
Human recombinant myeloperoxidase (recMPO), purified from an engineered Chinese hamster ovary (CHO) cell line, has been characterized and compared to the mature enzyme isolated from polymorphonuclear leukocytes. Both molecules appear essentially similar in physicochemical enzymatic terms according to the following observations. 1. The unprocessed recombinant protein displays the characteristic light absorption spectra of ferric mature MPO and exhibits its typical spectral changes in the presence of dithionite or hydrogen peroxide. 2. The addition of 14C-labeled 5-aminolevulinic acid, a heme precursor, to the culture medium of recombinant CHO cells yields labeled recMPO, indicating the presence of a heme-like structure in the molecule. 3. Like mature MPO, recMPO has a peroxidatic activity and catalyzes the oxidation of chloride ions in the presence of hydrogen peroxide, producing hypochlorous acid as measured by the monochlorodimedon assay. For both enzymes, the chlorinating activity optimally occurs around pH 5.0 at about 100 microM of hydrogen peroxide and is strongly inhibited by methimazole. 4. Diethylpyrocarbonate significantly reduces the enzymatic activity of both molecules, suggesting that histidine residues may be of prime importance in the active site of the enzymes. 5. According to infrared spectroscopy data, both enzymes present a very similar secondary structure organization. In conclusion, the data suggest that the processing of the precursor enzyme (recMPO) into the mature form occurs without major structural and functional consequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号